Properties

Label 4.2e11_3e6.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{11} \cdot 3^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1492992= 2^{11} \cdot 3^{6} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 8 x^{3} - 6 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 9 + \left(17 a + 13\right)\cdot 19 + \left(12 a + 8\right)\cdot 19^{2} + \left(8 a + 1\right)\cdot 19^{3} + \left(15 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 2\cdot 19 + 12\cdot 19^{2} + 5\cdot 19^{3} + 17\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 16 + \left(a + 4\right)\cdot 19 + \left(6 a + 4\right)\cdot 19^{2} + \left(10 a + 16\right)\cdot 19^{3} + \left(3 a + 7\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 6\cdot 19 + 7\cdot 19^{2} + 15\cdot 19^{3} + 6\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + \left(4 a + 9\right)\cdot 19 + \left(15 a + 16\right)\cdot 19^{2} + \left(18 a + 16\right)\cdot 19^{3} + \left(13 a + 4\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 12 + \left(14 a + 1\right)\cdot 19 + \left(3 a + 8\right)\cdot 19^{2} + 19^{3} + 5 a\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(1,2)$$-2$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$4$$3$$(1,2,3)$$1$
$18$$4$$(1,5,2,4)(3,6)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(1,2)(4,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.