Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 617 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 168 + 226\cdot 617 + 111\cdot 617^{2} + 255\cdot 617^{3} + 295\cdot 617^{4} + 487\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 172 + 339\cdot 617 + 199\cdot 617^{2} + 402\cdot 617^{3} + 439\cdot 617^{4} + 436\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 175 + 239\cdot 617 + 158\cdot 617^{2} + 538\cdot 617^{3} + 334\cdot 617^{4} + 10\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 187 + 231\cdot 617 + 117\cdot 617^{2} + 349\cdot 617^{3} + 65\cdot 617^{4} + 511\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 430 + 385\cdot 617 + 499\cdot 617^{2} + 267\cdot 617^{3} + 551\cdot 617^{4} + 105\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 442 + 377\cdot 617 + 458\cdot 617^{2} + 78\cdot 617^{3} + 282\cdot 617^{4} + 606\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 445 + 277\cdot 617 + 417\cdot 617^{2} + 214\cdot 617^{3} + 177\cdot 617^{4} + 180\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 449 + 390\cdot 617 + 505\cdot 617^{2} + 361\cdot 617^{3} + 321\cdot 617^{4} + 129\cdot 617^{5} +O\left(617^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(2,7)(4,5)$ |
| $(1,4,8,5)(2,3,7,6)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(2,5,7,4)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,3,7,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,6,5)(3,4,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,6,2)(3,7,8,4)$ |
$0$ |
| $4$ |
$4$ |
$(2,5,7,4)(3,6)$ |
$0$ |
| $4$ |
$4$ |
$(2,4,7,5)(3,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.