Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 6\cdot 191 + 135\cdot 191^{2} + 74\cdot 191^{3} + 174\cdot 191^{4} + 6\cdot 191^{5} + 95\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 53\cdot 191 + 166\cdot 191^{2} + 130\cdot 191^{3} + 111\cdot 191^{4} + 29\cdot 191^{5} + 103\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 35 + 110\cdot 191 + 153\cdot 191^{2} + 98\cdot 191^{3} + 124\cdot 191^{4} + 175\cdot 191^{5} + 89\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 + 110\cdot 191 + 131\cdot 191^{2} + 168\cdot 191^{3} + 34\cdot 191^{4} + 72\cdot 191^{5} + 99\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 147 + 80\cdot 191 + 59\cdot 191^{2} + 22\cdot 191^{3} + 156\cdot 191^{4} + 118\cdot 191^{5} + 91\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 80\cdot 191 + 37\cdot 191^{2} + 92\cdot 191^{3} + 66\cdot 191^{4} + 15\cdot 191^{5} + 101\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 168 + 137\cdot 191 + 24\cdot 191^{2} + 60\cdot 191^{3} + 79\cdot 191^{4} + 161\cdot 191^{5} + 87\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 173 + 184\cdot 191 + 55\cdot 191^{2} + 116\cdot 191^{3} + 16\cdot 191^{4} + 184\cdot 191^{5} + 95\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(2,7)(4,5)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(2,5,7,4)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,6,4)(3,5,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,6,2)(3,7,8,5)$ |
$0$ |
| $4$ |
$4$ |
$(2,5,7,4)(3,6)$ |
$0$ |
| $4$ |
$4$ |
$(2,4,7,5)(3,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.