Properties

Label 4.2e11_3e2_7e2.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{11} \cdot 3^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$903168= 2^{11} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{6} + 8 x^{4} - 6 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 18 + 6\cdot 191 + 135\cdot 191^{2} + 74\cdot 191^{3} + 174\cdot 191^{4} + 6\cdot 191^{5} + 95\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 23 + 53\cdot 191 + 166\cdot 191^{2} + 130\cdot 191^{3} + 111\cdot 191^{4} + 29\cdot 191^{5} + 103\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 35 + 110\cdot 191 + 153\cdot 191^{2} + 98\cdot 191^{3} + 124\cdot 191^{4} + 175\cdot 191^{5} + 89\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 44 + 110\cdot 191 + 131\cdot 191^{2} + 168\cdot 191^{3} + 34\cdot 191^{4} + 72\cdot 191^{5} + 99\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 147 + 80\cdot 191 + 59\cdot 191^{2} + 22\cdot 191^{3} + 156\cdot 191^{4} + 118\cdot 191^{5} + 91\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 156 + 80\cdot 191 + 37\cdot 191^{2} + 92\cdot 191^{3} + 66\cdot 191^{4} + 15\cdot 191^{5} + 101\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 168 + 137\cdot 191 + 24\cdot 191^{2} + 60\cdot 191^{3} + 79\cdot 191^{4} + 161\cdot 191^{5} + 87\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 173 + 184\cdot 191 + 55\cdot 191^{2} + 116\cdot 191^{3} + 16\cdot 191^{4} + 184\cdot 191^{5} + 95\cdot 191^{6} +O\left(191^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$
$(2,5,7,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$4$ $4$ $(1,2,6,4)(3,5,8,7)$ $0$
$4$ $4$ $(1,4,6,2)(3,7,8,5)$ $0$
$4$ $4$ $(2,5,7,4)(3,6)$ $0$
$4$ $4$ $(2,4,7,5)(3,6)$ $0$
$4$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.