Properties

Label 4.2e11_3_5e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{11} \cdot 3 \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$153600= 2^{11} \cdot 3 \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 4 x^{3} - 11 x^{2} - 12 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.2e3_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 66 a + 46 + \left(43 a + 22\right)\cdot 67 + \left(34 a + 36\right)\cdot 67^{2} + \left(54 a + 7\right)\cdot 67^{3} + \left(66 a + 25\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 66 + a\cdot 67 + \left(14 a + 58\right)\cdot 67^{2} + \left(12 a + 39\right)\cdot 67^{3} + \left(27 a + 62\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 42 + \left(23 a + 65\right)\cdot 67 + \left(32 a + 63\right)\cdot 67^{2} + \left(12 a + 56\right)\cdot 67^{3} + 36\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 a + 39 + \left(65 a + 62\right)\cdot 67 + \left(52 a + 45\right)\cdot 67^{2} + \left(54 a + 7\right)\cdot 67^{3} + \left(39 a + 25\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 17\cdot 67 + 51\cdot 67^{2} + 60\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 + 31\cdot 67 + 12\cdot 67^{2} + 28\cdot 67^{3} + 63\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,3,5)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(2,4,6)(3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.