Properties

Label 4.2e11_17e2.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{11} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$591872= 2^{11} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 7 x^{6} - 8 x^{5} + 11 x^{4} + 5 x^{3} + 11 x^{2} - 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 647 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 172 + 80\cdot 647 + 556\cdot 647^{2} + 194\cdot 647^{3} + 147\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 223 + 175\cdot 647 + 376\cdot 647^{2} + 500\cdot 647^{3} + 437\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 325 + 151\cdot 647 + 31\cdot 647^{2} + 132\cdot 647^{3} + 308\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 418 + 512\cdot 647 + 516\cdot 647^{2} + 347\cdot 647^{3} + 621\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 452 + 441\cdot 647 + 630\cdot 647^{2} + 538\cdot 647^{3} + 517\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 456 + 173\cdot 647 + 521\cdot 647^{2} + 47\cdot 647^{3} + 377\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 561 + 326\cdot 647 + 71\cdot 647^{2} + 127\cdot 647^{3} + 168\cdot 647^{4} +O\left(647^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 629 + 78\cdot 647 + 531\cdot 647^{2} + 51\cdot 647^{3} + 10\cdot 647^{4} +O\left(647^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,4)(5,7)$
$(1,4)(5,6)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,5,4,6)(2,7)$
$(1,5)(2,8)(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,7)(3,8)(5,6)$$-4$
$2$$2$$(1,5)(2,8)(3,7)(4,6)$$0$
$2$$2$$(1,4)(5,6)$$0$
$2$$2$$(1,6)(2,8)(3,7)(4,5)$$0$
$4$$2$$(1,8)(2,6)(3,4)(5,7)$$0$
$4$$4$$(1,8,5,2)(3,6,7,4)$$0$
$4$$4$$(1,2,5,8)(3,4,7,6)$$0$
$4$$4$$(1,5,4,6)(2,7)$$0$
$4$$4$$(1,6,4,5)(2,7)$$0$
$4$$4$$(1,2,4,7)(3,6,8,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.