Properties

Label 4.2e11_13e2.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{11} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$346112= 2^{11} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{3} - x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 4 a\cdot 7 + \left(a + 6\right)\cdot 7^{2} + \left(5 a + 3\right)\cdot 7^{3} + \left(2 a + 3\right)\cdot 7^{4} + 2\cdot 7^{5} + 3\cdot 7^{6} + \left(6 a + 4\right)\cdot 7^{7} + \left(3 a + 1\right)\cdot 7^{8} + \left(5 a + 4\right)\cdot 7^{9} + \left(6 a + 4\right)\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 1 + \left(2 a + 3\right)\cdot 7 + \left(5 a + 3\right)\cdot 7^{2} + a\cdot 7^{3} + \left(4 a + 1\right)\cdot 7^{4} + 6 a\cdot 7^{5} + \left(6 a + 3\right)\cdot 7^{6} + 3\cdot 7^{7} + \left(3 a + 6\right)\cdot 7^{8} + \left(a + 5\right)\cdot 7^{9} + 5\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 4 + 5\cdot 7 + 6\cdot 7^{2} + 5\cdot 7^{3} + 3\cdot 7^{4} + 2\cdot 7^{5} + 5\cdot 7^{6} + 6\cdot 7^{8} + 7^{9} + 4\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 4 a + \left(6 a + 5\right)\cdot 7 + \left(4 a + 6\right)\cdot 7^{2} + \left(5 a + 4\right)\cdot 7^{3} + \left(3 a + 3\right)\cdot 7^{4} + 4 a\cdot 7^{5} + \left(4 a + 1\right)\cdot 7^{6} + \left(a + 4\right)\cdot 7^{7} + \left(6 a + 5\right)\cdot 7^{9} + 3 a\cdot 7^{10} +O\left(7^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 4 + \left(2 a + 5\right)\cdot 7^{2} + \left(a + 5\right)\cdot 7^{3} + \left(3 a + 1\right)\cdot 7^{4} + \left(2 a + 1\right)\cdot 7^{5} + \left(2 a + 1\right)\cdot 7^{6} + \left(5 a + 1\right)\cdot 7^{7} + \left(6 a + 6\right)\cdot 7^{8} + 3\cdot 7^{9} + \left(3 a + 5\right)\cdot 7^{10} +O\left(7^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,4)$
$(1,4,3,2)$
$(1,2,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,3)(2,4)$$0$
$5$$4$$(1,4,3,2)$$0$
$5$$4$$(1,2,3,4)$$0$
$4$$5$$(1,2,4,3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.