Properties

Label 4.2e11_11e3.10t12.4
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{11} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$2725888= 2^{11} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 4 x^{3} + 4 x^{2} + 4 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 41 + \left(6 a + 79\right)\cdot 97 + \left(50 a + 92\right)\cdot 97^{2} + \left(65 a + 64\right)\cdot 97^{3} + \left(29 a + 56\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 a + 6 + \left(79 a + 20\right)\cdot 97 + \left(28 a + 74\right)\cdot 97^{2} + \left(39 a + 64\right)\cdot 97^{3} + \left(53 a + 19\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 85 + \left(90 a + 41\right)\cdot 97 + \left(46 a + 39\right)\cdot 97^{2} + \left(31 a + 80\right)\cdot 97^{3} + \left(67 a + 20\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 89\cdot 97 + 25\cdot 97^{2} + 84\cdot 97^{3} + 52\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 + 6\cdot 97 + 35\cdot 97^{2} + 18\cdot 97^{3} + 10\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 52 + \left(17 a + 53\right)\cdot 97 + \left(68 a + 23\right)\cdot 97^{2} + \left(57 a + 75\right)\cdot 97^{3} + \left(43 a + 33\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3,4,5,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$15$ $2$ $(1,2)(5,6)$ $0$
$20$ $3$ $(1,4,6)(2,3,5)$ $1$
$30$ $4$ $(1,6,2,5)$ $0$
$24$ $5$ $(1,6,3,4,5)$ $-1$
$20$ $6$ $(1,3,4,5,6,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.