Properties

Label 4.2e11_11e3.10t12.2
Dimension 4
Group $S_5$
Conductor $ 2^{11} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2725888= 2^{11} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 8 x^{2} + 2 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 359 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 79 + 247\cdot 359 + 267\cdot 359^{2} + 339\cdot 359^{3} + 342\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 81 + 335\cdot 359 + 95\cdot 359^{2} + 98\cdot 359^{3} + 281\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 125 + 128\cdot 359 + 9\cdot 359^{2} + 319\cdot 359^{3} + 352\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 145 + 121\cdot 359 + 226\cdot 359^{2} + 175\cdot 359^{3} + 278\cdot 359^{4} +O\left(359^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 290 + 244\cdot 359 + 118\cdot 359^{2} + 144\cdot 359^{3} + 180\cdot 359^{4} +O\left(359^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.