Properties

Label 4.2e11_11e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 2^{11} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2725888= 2^{11} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{5} - 6 x^{3} - 4 x^{2} - x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 25\cdot 67 + 9\cdot 67^{2} + 56\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 51\cdot 67 + 24\cdot 67^{2} + 34\cdot 67^{3} + 58\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 31 + \left(22 a + 6\right)\cdot 67 + \left(9 a + 25\right)\cdot 67^{2} + \left(29 a + 10\right)\cdot 67^{3} + \left(40 a + 6\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 66 a + 35 + \left(44 a + 26\right)\cdot 67 + \left(57 a + 40\right)\cdot 67^{2} + \left(37 a + 50\right)\cdot 67^{3} + \left(26 a + 4\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 + 24\cdot 67 + 34\cdot 67^{2} + 49\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.