Properties

Label 4.2e11_11e2.5t3.1
Dimension 4
Group $F_5$
Conductor $ 2^{11} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$247808= 2^{11} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{5} + 2 x^{3} - 4 x^{2} - x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 11\cdot 17^{2} + 2\cdot 17^{3} + 2\cdot 17^{4} + 13\cdot 17^{5} + 5\cdot 17^{6} + 3\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 7 a + \left(10 a + 9\right)\cdot 17 + \left(3 a + 12\right)\cdot 17^{2} + 8 a\cdot 17^{3} + \left(11 a + 12\right)\cdot 17^{4} + \left(3 a + 16\right)\cdot 17^{5} + \left(14 a + 9\right)\cdot 17^{6} + \left(6 a + 2\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 7 + \left(6 a + 12\right)\cdot 17 + \left(13 a + 5\right)\cdot 17^{2} + \left(8 a + 5\right)\cdot 17^{3} + \left(5 a + 15\right)\cdot 17^{4} + \left(13 a + 8\right)\cdot 17^{5} + \left(2 a + 3\right)\cdot 17^{6} + \left(10 a + 12\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 5 + 3 a\cdot 17 + \left(9 a + 8\right)\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(5 a + 8\right)\cdot 17^{4} + 8\cdot 17^{5} + \left(5 a + 13\right)\cdot 17^{6} + 2 a\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 14 + \left(13 a + 11\right)\cdot 17 + \left(7 a + 13\right)\cdot 17^{2} + \left(15 a + 8\right)\cdot 17^{3} + \left(11 a + 12\right)\cdot 17^{4} + \left(16 a + 3\right)\cdot 17^{5} + \left(11 a + 1\right)\cdot 17^{6} + \left(14 a + 15\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,4)$
$(1,2,5,4,3)$
$(1,2,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(1,2)(3,5)$ $0$
$5$ $4$ $(1,3,2,5)$ $0$
$5$ $4$ $(1,5,2,3)$ $0$
$4$ $5$ $(1,2,5,4,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.