Properties

Label 4.2e10_7e4.8t26.4c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{10} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$2458624= 2^{10} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 4 x^{5} - 4 x^{3} + 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 449 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 33 + 131\cdot 449 + 253\cdot 449^{2} + 434\cdot 449^{3} + 243\cdot 449^{4} + 390\cdot 449^{5} + 306\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 162 + 344\cdot 449 + 210\cdot 449^{2} + 91\cdot 449^{3} + 211\cdot 449^{4} + 124\cdot 449^{5} + 417\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 202 + 442\cdot 449 + 318\cdot 449^{2} + 448\cdot 449^{3} + 236\cdot 449^{4} + 60\cdot 449^{5} + 37\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 291 + 54\cdot 449 + 54\cdot 449^{2} + 292\cdot 449^{3} + 79\cdot 449^{4} + 236\cdot 449^{5} + 237\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 352 + 341\cdot 449 + 45\cdot 449^{2} + 135\cdot 449^{3} + 217\cdot 449^{4} + 14\cdot 449^{5} + 136\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 381 + 65\cdot 449 + 287\cdot 449^{2} + 283\cdot 449^{3} + 198\cdot 449^{4} + 273\cdot 449^{5} + 229\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 395 + 40\cdot 449 + 439\cdot 449^{2} + 444\cdot 449^{3} + 344\cdot 449^{4} + 11\cdot 449^{5} + 263\cdot 449^{6} +O\left(449^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 429 + 374\cdot 449 + 186\cdot 449^{2} + 114\cdot 449^{3} + 263\cdot 449^{4} + 235\cdot 449^{5} + 168\cdot 449^{6} +O\left(449^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,2,3,6,4,5,8)$
$(1,2,6,5)(3,7,8,4)$
$(1,6)(4,7)$
$(2,5)(3,8)$
$(1,4,6,7)(2,8,5,3)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-4$
$2$$2$$(3,8)(4,7)$$0$
$4$$2$$(1,6)(4,7)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(1,4)(2,8)(3,5)(6,7)$$0$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$8$$2$$(1,6)(3,4)(7,8)$$0$
$2$$4$$(1,2,6,5)(3,4,8,7)$$0$
$2$$4$$(1,2,6,5)(3,7,8,4)$$0$
$4$$4$$(1,4,6,7)(2,8,5,3)$$0$
$4$$4$$(1,4,6,7)(2,3,5,8)$$0$
$4$$4$$(3,7,8,4)$$-2$
$4$$4$$(1,2,6,5)(3,8)(4,7)$$2$
$8$$8$$(1,7,2,3,6,4,5,8)$$0$
$8$$8$$(1,7,2,8,6,4,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.