Properties

Label 4.2e10_7e4.8t26.3c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{10} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$2458624= 2^{10} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} - x^{4} - 8 x^{3} - 8 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 449 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 57 + 128\cdot 449 + 36\cdot 449^{2} + 388\cdot 449^{3} + 373\cdot 449^{4} + 58\cdot 449^{5} + 437\cdot 449^{6} + 150\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 98 + 83\cdot 449 + 170\cdot 449^{2} + 40\cdot 449^{3} + 309\cdot 449^{4} + 296\cdot 449^{5} + 233\cdot 449^{6} + 72\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 100 + 131\cdot 449 + 366\cdot 449^{2} + 344\cdot 449^{3} + 354\cdot 449^{4} + 222\cdot 449^{5} + 235\cdot 449^{6} + 17\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 188 + 198\cdot 449 + 417\cdot 449^{2} + 386\cdot 449^{3} + 209\cdot 449^{4} + 445\cdot 449^{5} + 89\cdot 449^{6} + 206\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 291 + 235\cdot 449 + 379\cdot 449^{2} + 108\cdot 449^{3} + 212\cdot 449^{4} + 357\cdot 449^{5} + 101\cdot 449^{6} + 128\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 319 + 332\cdot 449 + 183\cdot 449^{2} + 57\cdot 449^{3} + 121\cdot 449^{4} + 321\cdot 449^{5} + 21\cdot 449^{6} + 97\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 362 + 335\cdot 449 + 64\cdot 449^{2} + 14\cdot 449^{3} + 102\cdot 449^{4} + 36\cdot 449^{5} + 269\cdot 449^{6} + 412\cdot 449^{7} +O\left(449^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 381 + 350\cdot 449 + 177\cdot 449^{2} + 6\cdot 449^{3} + 113\cdot 449^{4} + 57\cdot 449^{5} + 407\cdot 449^{6} + 261\cdot 449^{7} +O\left(449^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,7,4)(2,6,8,3)$
$(1,7)(3,6)$
$(3,6)(4,5)$
$(1,5,3,8,7,4,6,2)$
$(1,2)(3,4)(5,6)(7,8)$
$(2,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,8)(3,6)(4,5)$$-4$
$2$$2$$(2,8)(4,5)$$0$
$4$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,5)(2,6)(3,8)(4,7)$$0$
$4$$2$$(1,6)(2,5)(3,7)(4,8)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$8$$2$$(2,4)(3,6)(5,8)$$0$
$2$$4$$(1,3,7,6)(2,5,8,4)$$0$
$2$$4$$(1,6,7,3)(2,5,8,4)$$0$
$4$$4$$(1,5,7,4)(2,6,8,3)$$0$
$4$$4$$(2,4,8,5)$$-2$
$4$$4$$(1,4,7,5)(2,6,8,3)$$0$
$4$$4$$(1,7)(2,4,8,5)(3,6)$$2$
$8$$8$$(1,5,3,8,7,4,6,2)$$0$
$8$$8$$(1,5,6,8,7,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.