Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 569 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 379\cdot 569 + 346\cdot 569^{2} + 168\cdot 569^{3} + 184\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 188\cdot 569 + 534\cdot 569^{2} + 123\cdot 569^{3} + 356\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 62 + 115\cdot 569 + 250\cdot 569^{2} + 211\cdot 569^{3} + 103\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 79 + 100\cdot 569 + 53\cdot 569^{2} + 318\cdot 569^{3} + 147\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 214 + 270\cdot 569 + 152\cdot 569^{2} + 40\cdot 569^{3} + 20\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 286 + 427\cdot 569 + 280\cdot 569^{2} + 264\cdot 569^{3} + 480\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 474 + 455\cdot 569 + 6\cdot 569^{2} + 65\cdot 569^{3} + 494\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 561 + 339\cdot 569 + 82\cdot 569^{2} + 515\cdot 569^{3} + 489\cdot 569^{4} +O\left(569^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(6,8)$ |
| $(1,2)(3,7)(4,6)(5,8)$ |
| $(1,3)(2,7)$ |
| $(1,6)(2,4)(3,8)(5,7)$ |
| $(1,8)(2,4)(3,6)(5,7)$ |
| $(1,7)(2,3)(4,6)(5,8)$ |
| $(1,3)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,7)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,3)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,5)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(4,5)$ | $0$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,4)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)(3,8)(4,7)$ | $0$ |
| $2$ | $4$ | $(1,4,3,5)(2,8,7,6)$ | $0$ |
| $2$ | $4$ | $(1,8,3,6)(2,5,7,4)$ | $0$ |
| $2$ | $4$ | $(1,7,3,2)(4,8,5,6)$ | $0$ |
| $2$ | $4$ | $(1,8,3,6)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,2,3,7)(4,8,5,6)$ | $0$ |
| $2$ | $4$ | $(1,5,3,4)(2,8,7,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.