Properties

Label 4.2e10_5e2_7e2.8t22.6
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1254400= 2^{10} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 2 x^{6} + 16 x^{5} + 8 x^{4} - 28 x^{3} - 16 x^{2} + 24 x + 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 569 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 379\cdot 569 + 346\cdot 569^{2} + 168\cdot 569^{3} + 184\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 188\cdot 569 + 534\cdot 569^{2} + 123\cdot 569^{3} + 356\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 115\cdot 569 + 250\cdot 569^{2} + 211\cdot 569^{3} + 103\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 100\cdot 569 + 53\cdot 569^{2} + 318\cdot 569^{3} + 147\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 214 + 270\cdot 569 + 152\cdot 569^{2} + 40\cdot 569^{3} + 20\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 286 + 427\cdot 569 + 280\cdot 569^{2} + 264\cdot 569^{3} + 480\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 474 + 455\cdot 569 + 6\cdot 569^{2} + 65\cdot 569^{3} + 494\cdot 569^{4} +O\left(569^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 561 + 339\cdot 569 + 82\cdot 569^{2} + 515\cdot 569^{3} + 489\cdot 569^{4} +O\left(569^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(6,8)$
$(1,2)(3,7)(4,6)(5,8)$
$(1,3)(2,7)$
$(1,6)(2,4)(3,8)(5,7)$
$(1,8)(2,4)(3,6)(5,7)$
$(1,7)(2,3)(4,6)(5,8)$
$(1,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $-4$
$2$ $2$ $(1,2)(3,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,3)(2,7)$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$2$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $0$
$2$ $2$ $(1,3)(4,5)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$2$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$2$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$2$ $4$ $(1,4,3,5)(2,8,7,6)$ $0$
$2$ $4$ $(1,8,3,6)(2,5,7,4)$ $0$
$2$ $4$ $(1,7,3,2)(4,8,5,6)$ $0$
$2$ $4$ $(1,8,3,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,2,3,7)(4,8,5,6)$ $0$
$2$ $4$ $(1,5,3,4)(2,8,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.