Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 133\cdot 241 + 12\cdot 241^{2} + 67\cdot 241^{3} + 81\cdot 241^{4} + 134\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 28 + 99\cdot 241 + 117\cdot 241^{2} + 32\cdot 241^{3} + 80\cdot 241^{4} + 168\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 72 + 13\cdot 241 + 192\cdot 241^{2} + 186\cdot 241^{3} + 81\cdot 241^{4} + 29\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 119 + 21\cdot 241 + 150\cdot 241^{2} + 129\cdot 241^{3} + 128\cdot 241^{4} + 173\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 122 + 219\cdot 241 + 90\cdot 241^{2} + 111\cdot 241^{3} + 112\cdot 241^{4} + 67\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 169 + 227\cdot 241 + 48\cdot 241^{2} + 54\cdot 241^{3} + 159\cdot 241^{4} + 211\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 213 + 141\cdot 241 + 123\cdot 241^{2} + 208\cdot 241^{3} + 160\cdot 241^{4} + 72\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 230 + 107\cdot 241 + 228\cdot 241^{2} + 173\cdot 241^{3} + 159\cdot 241^{4} + 106\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,8,5)(2,6,7,3)$ |
| $(2,7)(4,5)$ |
| $(3,6)(4,5)$ |
| $(1,8)(4,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(3,6)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)(3,8)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,8)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,8)(3,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,8)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,4,8,5)(2,6,7,3)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,4,6,5)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.