Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 136\cdot 193 + 49\cdot 193^{2} + 74\cdot 193^{3} + 192\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 155\cdot 193 + 70\cdot 193^{2} + 65\cdot 193^{3} + 52\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 18 + 26\cdot 193 + 159\cdot 193^{2} + 137\cdot 193^{3} + 131\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 63 + 101\cdot 193 + 111\cdot 193^{2} + 2\cdot 193^{3} + 87\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 130 + 91\cdot 193 + 81\cdot 193^{2} + 190\cdot 193^{3} + 105\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 175 + 166\cdot 193 + 33\cdot 193^{2} + 55\cdot 193^{3} + 61\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 181 + 37\cdot 193 + 122\cdot 193^{2} + 127\cdot 193^{3} + 140\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 191 + 56\cdot 193 + 143\cdot 193^{2} + 118\cdot 193^{3} +O\left(193^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,8,2)(3,5,6,4)$ |
| $(3,6)(4,5)$ |
| $(2,7)(4,5)$ |
| $(1,8)(4,5)$ |
| $(1,4,8,5)(2,3,7,6)$ |
| $(1,7,8,2)(3,4,6,5)$ |
| $(1,5,8,4)(2,3,7,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,8)(4,5)$ | $0$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,4)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)(3,8)(4,7)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |
| $2$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $0$ |
| $2$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,4,6,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.