Properties

Label 4.2e10_3e2_7e2.8t22.6c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$451584= 2^{10} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 2 x^{4} + 6 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 136\cdot 193 + 49\cdot 193^{2} + 74\cdot 193^{3} + 192\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 155\cdot 193 + 70\cdot 193^{2} + 65\cdot 193^{3} + 52\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 26\cdot 193 + 159\cdot 193^{2} + 137\cdot 193^{3} + 131\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 101\cdot 193 + 111\cdot 193^{2} + 2\cdot 193^{3} + 87\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 130 + 91\cdot 193 + 81\cdot 193^{2} + 190\cdot 193^{3} + 105\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 175 + 166\cdot 193 + 33\cdot 193^{2} + 55\cdot 193^{3} + 61\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 181 + 37\cdot 193 + 122\cdot 193^{2} + 127\cdot 193^{3} + 140\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 191 + 56\cdot 193 + 143\cdot 193^{2} + 118\cdot 193^{3} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,2)(3,5,6,4)$
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,8)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,7,8,2)(3,4,6,5)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(1,8)(2,7)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.