Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 161\cdot 193 + 167\cdot 193^{2} + 29\cdot 193^{3} + 60\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 80 + 188\cdot 193 + 152\cdot 193^{2} + 126\cdot 193^{3} + 133\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 101 + 172\cdot 193 + 62\cdot 193^{2} + 136\cdot 193^{3} + 159\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 110 + 61\cdot 193 + 95\cdot 193^{2} + 182\cdot 193^{3} + 89\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 132 + 156\cdot 193 + 76\cdot 193^{2} + 163\cdot 193^{3} + 146\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 163 + 183\cdot 193 + 59\cdot 193^{2} + 37\cdot 193^{3} + 76\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 176 + 25\cdot 193 + 132\cdot 193^{2} + 80\cdot 193^{3} + 113\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 191 + 14\cdot 193 + 24\cdot 193^{2} + 15\cdot 193^{3} + 185\cdot 193^{4} +O\left(193^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8,4,7)(2,6,5,3)$ |
| $(2,5)(3,6)$ |
| $(1,5)(2,4)(3,7)(6,8)$ |
| $(1,4)(2,5)$ |
| $(1,8,4,7)(2,3,5,6)$ |
| $(2,5)(7,8)$ |
| $(1,2)(3,7)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,5)(3,6)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(2,5)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,4)(3,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,8)(3,4)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,3)(4,8)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,6)(3,5)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,7)(3,4)(5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,4,7)(2,6,5,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,4,7)(2,3,5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,4,3)(2,8,5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,4,2)(3,8,6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,4,5)(3,8,6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,4,3)(2,7,5,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.