Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 48 + 196\cdot 241 + 127\cdot 241^{2} + 157\cdot 241^{3} + 160\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 51 + 99\cdot 241 + 194\cdot 241^{2} + 144\cdot 241^{3} + 115\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 + 132\cdot 241 + 178\cdot 241^{2} + 137\cdot 241^{3} + 194\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 110 + 128\cdot 241 + 154\cdot 241^{2} + 187\cdot 241^{3} + 109\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 131 + 112\cdot 241 + 86\cdot 241^{2} + 53\cdot 241^{3} + 131\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 180 + 108\cdot 241 + 62\cdot 241^{2} + 103\cdot 241^{3} + 46\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 190 + 141\cdot 241 + 46\cdot 241^{2} + 96\cdot 241^{3} + 125\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 193 + 44\cdot 241 + 113\cdot 241^{2} + 83\cdot 241^{3} + 80\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,8)(4,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,5,8,4)(2,3,7,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,8)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,5)(4,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,5,7,4)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,4,6,5)$ | $0$ |
| $2$ | $4$ | $(1,4,8,5)(2,6,7,3)$ | $0$ |
| $2$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.