Properties

Label 4.2e10_3e2_5e2.8t22.6c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$230400= 2^{10} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} + x^{4} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 48 + 196\cdot 241 + 127\cdot 241^{2} + 157\cdot 241^{3} + 160\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 + 99\cdot 241 + 194\cdot 241^{2} + 144\cdot 241^{3} + 115\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 61 + 132\cdot 241 + 178\cdot 241^{2} + 137\cdot 241^{3} + 194\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 110 + 128\cdot 241 + 154\cdot 241^{2} + 187\cdot 241^{3} + 109\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 131 + 112\cdot 241 + 86\cdot 241^{2} + 53\cdot 241^{3} + 131\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 180 + 108\cdot 241 + 62\cdot 241^{2} + 103\cdot 241^{3} + 46\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 190 + 141\cdot 241 + 46\cdot 241^{2} + 96\cdot 241^{3} + 125\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 193 + 44\cdot 241 + 113\cdot 241^{2} + 83\cdot 241^{3} + 80\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,5,8,4)(2,6,7,3)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)$$0$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.