Properties

Label 4.2e10_3e2_5e2.8t22.4
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$230400= 2^{10} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{6} + 5 x^{4} - 6 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 74\cdot 241 + 55\cdot 241^{2} + 148\cdot 241^{3} + 227\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 64\cdot 241 + 202\cdot 241^{2} + 35\cdot 241^{3} + 106\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 207\cdot 241 + 226\cdot 241^{2} + 184\cdot 241^{3} + 119\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 96 + 46\cdot 241 + 216\cdot 241^{2} + 117\cdot 241^{3} + 187\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 145 + 194\cdot 241 + 24\cdot 241^{2} + 123\cdot 241^{3} + 53\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 186 + 33\cdot 241 + 14\cdot 241^{2} + 56\cdot 241^{3} + 121\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 217 + 176\cdot 241 + 38\cdot 241^{2} + 205\cdot 241^{3} + 134\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 220 + 166\cdot 241 + 185\cdot 241^{2} + 92\cdot 241^{3} + 13\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,8)(3,4)(5,6)$
$(1,8)(2,7)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,7,8,2)(3,4,6,5)$
$(1,4)(2,6)(3,7)(5,8)$
$(1,7,8,2)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,8)(3,6)$ $0$
$2$ $2$ $(1,8)(2,7)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.