Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 39 + 35\cdot 241 + 59\cdot 241^{2} + 2\cdot 241^{3} + 189\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 51 + 38\cdot 241 + 152\cdot 241^{2} + 189\cdot 241^{3} + 237\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 76 + 23\cdot 241 + 115\cdot 241^{2} + 80\cdot 241^{3} + 166\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 102 + 77\cdot 241 + 90\cdot 241^{2} + 3\cdot 241^{3} + 53\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 144 + 20\cdot 241 + 2\cdot 241^{2} + 160\cdot 241^{3} + 33\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 145 + 170\cdot 241 + 158\cdot 241^{2} + 56\cdot 241^{3} + 162\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 185 + 104\cdot 241 + 237\cdot 241^{2} + 128\cdot 241^{3} + 157\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 222 + 11\cdot 241 + 149\cdot 241^{2} + 101\cdot 241^{3} + 205\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,3,4)(5,8,7,6)$ |
| $(1,8,3,6)(2,5,4,7)$ |
| $(1,3)(2,4)$ |
| $(1,4,3,2)(5,8,7,6)$ |
| $(2,4)(5,7)$ |
| $(2,4)(6,8)$ |
| $(1,8,3,6)(2,7,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,4)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,6)(3,5)(4,8)$ | $0$ |
| $2$ | $2$ | $(2,4)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,5)(3,6)(4,7)$ | $0$ |
| $2$ | $4$ | $(1,2,3,4)(5,8,7,6)$ | $0$ |
| $2$ | $4$ | $(1,8,3,6)(2,5,4,7)$ | $0$ |
| $2$ | $4$ | $(1,4,3,2)(5,8,7,6)$ | $0$ |
| $2$ | $4$ | $(1,5,3,7)(2,6,4,8)$ | $0$ |
| $2$ | $4$ | $(1,8,3,6)(2,7,4,5)$ | $0$ |
| $2$ | $4$ | $(1,5,3,7)(2,8,4,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.