Properties

Label 4.2e10_3e2_5e2.8t22.3c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$230400= 2^{10} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 8 x^{5} + x^{4} + 16 x^{3} + 22 x^{2} + 12 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 39 + 35\cdot 241 + 59\cdot 241^{2} + 2\cdot 241^{3} + 189\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 + 38\cdot 241 + 152\cdot 241^{2} + 189\cdot 241^{3} + 237\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 76 + 23\cdot 241 + 115\cdot 241^{2} + 80\cdot 241^{3} + 166\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 102 + 77\cdot 241 + 90\cdot 241^{2} + 3\cdot 241^{3} + 53\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 144 + 20\cdot 241 + 2\cdot 241^{2} + 160\cdot 241^{3} + 33\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 145 + 170\cdot 241 + 158\cdot 241^{2} + 56\cdot 241^{3} + 162\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 185 + 104\cdot 241 + 237\cdot 241^{2} + 128\cdot 241^{3} + 157\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 222 + 11\cdot 241 + 149\cdot 241^{2} + 101\cdot 241^{3} + 205\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,7,6)$
$(1,8,3,6)(2,5,4,7)$
$(1,3)(2,4)$
$(1,4,3,2)(5,8,7,6)$
$(2,4)(5,7)$
$(2,4)(6,8)$
$(1,8,3,6)(2,7,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,4)(5,7)(6,8)$$-4$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,7)(2,6)(3,5)(4,8)$$0$
$2$$2$$(2,4)(5,7)$$0$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(5,7)$$0$
$2$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$2$$2$$(1,8)(2,7)(3,6)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(1,8)(2,5)(3,6)(4,7)$$0$
$2$$4$$(1,2,3,4)(5,8,7,6)$$0$
$2$$4$$(1,8,3,6)(2,5,4,7)$$0$
$2$$4$$(1,4,3,2)(5,8,7,6)$$0$
$2$$4$$(1,5,3,7)(2,6,4,8)$$0$
$2$$4$$(1,8,3,6)(2,7,4,5)$$0$
$2$$4$$(1,5,3,7)(2,8,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.