Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 52\cdot 241 + 101\cdot 241^{2} + 200\cdot 241^{3} + 174\cdot 241^{4} + 38\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 37 + 185\cdot 241 + 115\cdot 241^{2} + 90\cdot 241^{3} + 222\cdot 241^{4} + 152\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 47 + 218\cdot 241 + 99\cdot 241^{2} + 83\cdot 241^{3} + 60\cdot 241^{4} + 164\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 95 + 209\cdot 241 + 59\cdot 241^{2} + 96\cdot 241^{3} + 145\cdot 241^{4} + 203\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 124 + 42\cdot 241 + 233\cdot 241^{2} + 3\cdot 241^{4} + 7\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 207 + 199\cdot 241 + 191\cdot 241^{2} + 137\cdot 241^{3} + 214\cdot 241^{4} + 171\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 216 + 11\cdot 241 + 89\cdot 241^{2} + 60\cdot 241^{3} + 32\cdot 241^{4} + 107\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 226 + 44\cdot 241 + 73\cdot 241^{2} + 53\cdot 241^{3} + 111\cdot 241^{4} + 118\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(3,7)$ |
| $(1,2,6,8)(3,4,7,5)$ |
| $(1,5,6,4)(2,7,8,3)$ |
| $(1,8,6,2)(3,4,7,5)$ |
| $(1,6)(2,8)$ |
| $(1,4,6,5)(2,7,8,3)$ |
| $(1,6)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,8)(3,7)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,6)(2,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,5)(3,6)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(3,7)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,6)(3,5)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,8)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,5)(4,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(2,8)(3,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,5)(4,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,7)(3,8)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,2,6,8)(3,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,5,6,4)(2,7,8,3)$ | $0$ |
| $2$ | $4$ | $(1,8,6,2)(3,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,7,6,3)(2,4,8,5)$ | $0$ |
| $2$ | $4$ | $(1,3,6,7)(2,4,8,5)$ | $0$ |
| $2$ | $4$ | $(1,4,6,5)(2,7,8,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.