Properties

Label 4.2e10_3e2_5e2.8t22.2
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$230400= 2^{10} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} - 8 x^{5} - 5 x^{4} + 8 x^{3} + 12 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12 + 52\cdot 241 + 101\cdot 241^{2} + 200\cdot 241^{3} + 174\cdot 241^{4} + 38\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 37 + 185\cdot 241 + 115\cdot 241^{2} + 90\cdot 241^{3} + 222\cdot 241^{4} + 152\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 47 + 218\cdot 241 + 99\cdot 241^{2} + 83\cdot 241^{3} + 60\cdot 241^{4} + 164\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 95 + 209\cdot 241 + 59\cdot 241^{2} + 96\cdot 241^{3} + 145\cdot 241^{4} + 203\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 124 + 42\cdot 241 + 233\cdot 241^{2} + 3\cdot 241^{4} + 7\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 207 + 199\cdot 241 + 191\cdot 241^{2} + 137\cdot 241^{3} + 214\cdot 241^{4} + 171\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 216 + 11\cdot 241 + 89\cdot 241^{2} + 60\cdot 241^{3} + 32\cdot 241^{4} + 107\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 226 + 44\cdot 241 + 73\cdot 241^{2} + 53\cdot 241^{3} + 111\cdot 241^{4} + 118\cdot 241^{5} +O\left(241^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(3,7)$
$(1,2,6,8)(3,4,7,5)$
$(1,5,6,4)(2,7,8,3)$
$(1,8,6,2)(3,4,7,5)$
$(1,6)(2,8)$
$(1,4,6,5)(2,7,8,3)$
$(1,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $-4$
$2$ $2$ $(1,6)(2,8)$ $0$
$2$ $2$ $(1,7)(2,5)(3,6)(4,8)$ $0$
$2$ $2$ $(1,6)(3,7)$ $0$
$2$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $0$
$2$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $0$
$2$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $0$
$2$ $2$ $(2,8)(3,7)$ $0$
$2$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$
$2$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $0$
$2$ $4$ $(1,2,6,8)(3,4,7,5)$ $0$
$2$ $4$ $(1,5,6,4)(2,7,8,3)$ $0$
$2$ $4$ $(1,8,6,2)(3,4,7,5)$ $0$
$2$ $4$ $(1,7,6,3)(2,4,8,5)$ $0$
$2$ $4$ $(1,3,6,7)(2,4,8,5)$ $0$
$2$ $4$ $(1,4,6,5)(2,7,8,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.