Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 44 + 30\cdot 241 + 35\cdot 241^{2} + 87\cdot 241^{3} + 139\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 61 + 18\cdot 241 + 222\cdot 241^{2} + 181\cdot 241^{3} + 18\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 80 + 62\cdot 241 + 199\cdot 241^{2} + 219\cdot 241^{3} + 16\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 85 + 63\cdot 241 + 201\cdot 241^{2} + 27\cdot 241^{3} + 230\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 167 + 159\cdot 241 + 62\cdot 241^{2} + 179\cdot 241^{3} + 194\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 171 + 240\cdot 241 + 236\cdot 241^{2} + 92\cdot 241^{3} + 38\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 177 + 86\cdot 241 + 145\cdot 241^{2} + 216\cdot 241^{3} + 135\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 183 + 61\cdot 241 + 102\cdot 241^{2} + 199\cdot 241^{3} + 189\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,7)(6,8)$ |
| $(1,4,3,2)(5,7,6,8)$ |
| $(1,3)(2,4)$ |
| $(1,2)(3,4)(5,7)(6,8)$ |
| $(1,6,3,5)(2,7,4,8)$ |
| $(1,4,3,2)(5,8,6,7)$ |
| $(1,5)(2,7)(3,6)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,4)(5,6)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,6)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,4)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,8)(3,6)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,6)(3,7)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,5)(3,7)(4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,3,5)(2,7,4,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,3,7)(2,5,4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,3,2)(5,7,6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,3,4)(5,7,6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,3,5)(2,8,4,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,3,7)(2,6,4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.