Properties

Label 4.2e10_3e2_11e2.8t22.4
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{10} \cdot 3^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1115136= 2^{10} \cdot 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 8 x^{5} + 5 x^{4} - 16 x^{3} + 18 x^{2} - 4 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 33\cdot 97 + 26\cdot 97^{2} + 52\cdot 97^{3} + 58\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 85\cdot 97 + 8\cdot 97^{2} + 43\cdot 97^{3} + 66\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 + 41\cdot 97 + 78\cdot 97^{2} + 61\cdot 97^{3} + 38\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 94\cdot 97 + 52\cdot 97^{2} + 59\cdot 97^{3} + 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 + 43\cdot 97 + 16\cdot 97^{2} + 40\cdot 97^{3} + 81\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 + 7\cdot 97 + 27\cdot 97^{2} + 40\cdot 97^{3} + 56\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 68 + 69\cdot 97 + 53\cdot 97^{2} + 29\cdot 97^{3} + 87\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 75 + 12\cdot 97 + 27\cdot 97^{2} + 61\cdot 97^{3} + 94\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,8,3)(2,5,7,6)$
$(1,4,8,3)(2,6,7,5)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,7,8,2)(3,5,4,6)$
$(1,8)(3,4)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $-4$
$2$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,8)(3,4)$ $0$
$2$ $2$ $(1,6)(2,3)(4,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $0$
$2$ $2$ $(1,8)(5,6)$ $0$
$2$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$
$2$ $2$ $(3,4)(5,6)$ $0$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $4$ $(1,4,8,3)(2,5,7,6)$ $0$
$2$ $4$ $(1,2,8,7)(3,6,4,5)$ $0$
$2$ $4$ $(1,3,8,4)(2,5,7,6)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,4,6)$ $0$
$2$ $4$ $(1,6,8,5)(2,4,7,3)$ $0$
$2$ $4$ $(1,6,8,5)(2,3,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.