Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 33\cdot 97 + 26\cdot 97^{2} + 52\cdot 97^{3} + 58\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 + 85\cdot 97 + 8\cdot 97^{2} + 43\cdot 97^{3} + 66\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 40 + 41\cdot 97 + 78\cdot 97^{2} + 61\cdot 97^{3} + 38\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 52 + 94\cdot 97 + 52\cdot 97^{2} + 59\cdot 97^{3} + 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 53 + 43\cdot 97 + 16\cdot 97^{2} + 40\cdot 97^{3} + 81\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 63 + 7\cdot 97 + 27\cdot 97^{2} + 40\cdot 97^{3} + 56\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 68 + 69\cdot 97 + 53\cdot 97^{2} + 29\cdot 97^{3} + 87\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 75 + 12\cdot 97 + 27\cdot 97^{2} + 61\cdot 97^{3} + 94\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,8,3)(2,5,7,6)$ |
| $(1,4,8,3)(2,6,7,5)$ |
| $(1,4)(2,5)(3,8)(6,7)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,7,8,2)(3,5,4,6)$ |
| $(1,8)(3,4)$ |
| $(1,3)(2,5)(4,8)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,4)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,5)(3,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,3)(4,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(3,4)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,6)(4,5)(7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,3)(2,5,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,6,4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,4)(2,5,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,5)(2,4,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,5)(2,3,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.