Properties

Label 4.2e10_17e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{10} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$295936= 2^{10} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{4} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 17 + 113\cdot 409 + 211\cdot 409^{2} + 87\cdot 409^{3} + 82\cdot 409^{4} + 65\cdot 409^{5} + 272\cdot 409^{6} + 224\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 23 + 361\cdot 409 + 111\cdot 409^{2} + 385\cdot 409^{3} + 121\cdot 409^{4} + 327\cdot 409^{5} + 245\cdot 409^{6} + 146\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 52 + 210\cdot 409 + 77\cdot 409^{2} + 72\cdot 409^{3} + 141\cdot 409^{4} + 4\cdot 409^{5} + 79\cdot 409^{6} + 123\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 74 + 405\cdot 409 + 166\cdot 409^{2} + 15\cdot 409^{3} + 137\cdot 409^{4} + 301\cdot 409^{5} + 121\cdot 409^{6} + 352\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 335 + 3\cdot 409 + 242\cdot 409^{2} + 393\cdot 409^{3} + 271\cdot 409^{4} + 107\cdot 409^{5} + 287\cdot 409^{6} + 56\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 357 + 198\cdot 409 + 331\cdot 409^{2} + 336\cdot 409^{3} + 267\cdot 409^{4} + 404\cdot 409^{5} + 329\cdot 409^{6} + 285\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 386 + 47\cdot 409 + 297\cdot 409^{2} + 23\cdot 409^{3} + 287\cdot 409^{4} + 81\cdot 409^{5} + 163\cdot 409^{6} + 262\cdot 409^{7} +O\left(409^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 392 + 295\cdot 409 + 197\cdot 409^{2} + 321\cdot 409^{3} + 326\cdot 409^{4} + 343\cdot 409^{5} + 136\cdot 409^{6} + 184\cdot 409^{7} +O\left(409^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(2,7)(3,5)(4,6)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$2$$(2,7)(3,5)(4,6)$$0$
$4$$2$$(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,5,7,6,8,4,2,3)$$0$
$4$$8$$(1,6,7,4,8,3,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.