Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 409 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 65 + 269\cdot 409 + 269\cdot 409^{2} + 409^{3} + 86\cdot 409^{4} + 298\cdot 409^{5} + 188\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 72 + 237\cdot 409 + 400\cdot 409^{2} + 335\cdot 409^{3} + 144\cdot 409^{4} + 222\cdot 409^{5} + 253\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 104 + 407\cdot 409 + 408\cdot 409^{2} + 294\cdot 409^{3} + 139\cdot 409^{4} + 358\cdot 409^{5} + 295\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 135 + 24\cdot 409 + 172\cdot 409^{2} + 331\cdot 409^{3} + 41\cdot 409^{4} + 13\cdot 409^{5} + 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 274 + 384\cdot 409 + 236\cdot 409^{2} + 77\cdot 409^{3} + 367\cdot 409^{4} + 395\cdot 409^{5} + 407\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 305 + 409 + 114\cdot 409^{3} + 269\cdot 409^{4} + 50\cdot 409^{5} + 113\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 337 + 171\cdot 409 + 8\cdot 409^{2} + 73\cdot 409^{3} + 264\cdot 409^{4} + 186\cdot 409^{5} + 155\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 344 + 139\cdot 409 + 139\cdot 409^{2} + 407\cdot 409^{3} + 322\cdot 409^{4} + 110\cdot 409^{5} + 220\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,2)(4,5)(7,8)$ |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(4,5)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,2,6,8,4,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,6,8,5,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.