Properties

Label 4.2e10_139e2.8t23.3c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{10} \cdot 139^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$19784704= 2^{10} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} - 36 x^{5} - 32 x^{4} - 20 x^{3} - 16 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 8\cdot 17 + 17^{2} + 7\cdot 17^{4} + 3\cdot 17^{5} + 16\cdot 17^{6} + 6\cdot 17^{7} + 10\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 3 + 14\cdot 17 + 8\cdot 17^{2} + 8\cdot 17^{3} + 3\cdot 17^{4} + 17^{5} + 2\cdot 17^{6} + 6\cdot 17^{7} + 11\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 11 + 13\cdot 17 + \left(6 a + 10\right)\cdot 17^{2} + \left(7 a + 16\right)\cdot 17^{3} + \left(9 a + 15\right)\cdot 17^{4} + \left(a + 12\right)\cdot 17^{5} + \left(8 a + 11\right)\cdot 17^{6} + \left(2 a + 6\right)\cdot 17^{7} + \left(16 a + 4\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 3 + \left(13 a + 14\right)\cdot 17 + 7\cdot 17^{2} + 4 a\cdot 17^{3} + \left(9 a + 3\right)\cdot 17^{4} + \left(7 a + 4\right)\cdot 17^{5} + \left(16 a + 10\right)\cdot 17^{6} + \left(5 a + 8\right)\cdot 17^{7} + \left(13 a + 13\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 3 + \left(10 a + 15\right)\cdot 17 + \left(16 a + 1\right)\cdot 17^{2} + \left(10 a + 13\right)\cdot 17^{3} + \left(12 a + 13\right)\cdot 17^{4} + 15 a\cdot 17^{5} + 11\cdot 17^{6} + \left(14 a + 13\right)\cdot 17^{7} + \left(14 a + 2\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 16 + \left(16 a + 8\right)\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + 9 a\cdot 17^{3} + \left(7 a + 1\right)\cdot 17^{4} + \left(15 a + 5\right)\cdot 17^{5} + \left(8 a + 1\right)\cdot 17^{6} + \left(14 a + 1\right)\cdot 17^{7} + 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 16 a + 4 + \left(3 a + 9\right)\cdot 17 + \left(16 a + 12\right)\cdot 17^{2} + \left(12 a + 3\right)\cdot 17^{3} + \left(7 a + 8\right)\cdot 17^{4} + \left(9 a + 2\right)\cdot 17^{5} + 2\cdot 17^{6} + \left(11 a + 15\right)\cdot 17^{7} + \left(3 a + 3\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 10 a + 10 + \left(6 a + 1\right)\cdot 17 + 8\cdot 17^{2} + \left(6 a + 7\right)\cdot 17^{3} + \left(4 a + 15\right)\cdot 17^{4} + \left(a + 3\right)\cdot 17^{5} + \left(16 a + 13\right)\cdot 17^{6} + \left(2 a + 9\right)\cdot 17^{7} + \left(2 a + 3\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,7)(3,8,6,4)$
$(1,2)(4,5)(7,8)$
$(1,3,2,6)(4,7,8,5)$
$(1,4,7)(2,8,5)$
$(1,2)(3,6)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,6)(4,8)(5,7)$$-4$
$12$$2$$(1,2)(4,5)(7,8)$$0$
$8$$3$$(1,3,5)(2,6,7)$$1$
$6$$4$$(1,3,2,6)(4,7,8,5)$$0$
$8$$6$$(1,7,3,2,5,6)(4,8)$$-1$
$6$$8$$(1,7,6,4,2,5,3,8)$$0$
$6$$8$$(1,5,6,8,2,7,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.