Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 8\cdot 17 + 17^{2} + 7\cdot 17^{4} + 3\cdot 17^{5} + 16\cdot 17^{6} + 6\cdot 17^{7} + 10\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 + 14\cdot 17 + 8\cdot 17^{2} + 8\cdot 17^{3} + 3\cdot 17^{4} + 17^{5} + 2\cdot 17^{6} + 6\cdot 17^{7} + 11\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 a + 11 + 13\cdot 17 + \left(6 a + 10\right)\cdot 17^{2} + \left(7 a + 16\right)\cdot 17^{3} + \left(9 a + 15\right)\cdot 17^{4} + \left(a + 12\right)\cdot 17^{5} + \left(8 a + 11\right)\cdot 17^{6} + \left(2 a + 6\right)\cdot 17^{7} + \left(16 a + 4\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a + 3 + \left(13 a + 14\right)\cdot 17 + 7\cdot 17^{2} + 4 a\cdot 17^{3} + \left(9 a + 3\right)\cdot 17^{4} + \left(7 a + 4\right)\cdot 17^{5} + \left(16 a + 10\right)\cdot 17^{6} + \left(5 a + 8\right)\cdot 17^{7} + \left(13 a + 13\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a + 3 + \left(10 a + 15\right)\cdot 17 + \left(16 a + 1\right)\cdot 17^{2} + \left(10 a + 13\right)\cdot 17^{3} + \left(12 a + 13\right)\cdot 17^{4} + 15 a\cdot 17^{5} + 11\cdot 17^{6} + \left(14 a + 13\right)\cdot 17^{7} + \left(14 a + 2\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 16 + \left(16 a + 8\right)\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + 9 a\cdot 17^{3} + \left(7 a + 1\right)\cdot 17^{4} + \left(15 a + 5\right)\cdot 17^{5} + \left(8 a + 1\right)\cdot 17^{6} + \left(14 a + 1\right)\cdot 17^{7} + 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 16 a + 4 + \left(3 a + 9\right)\cdot 17 + \left(16 a + 12\right)\cdot 17^{2} + \left(12 a + 3\right)\cdot 17^{3} + \left(7 a + 8\right)\cdot 17^{4} + \left(9 a + 2\right)\cdot 17^{5} + 2\cdot 17^{6} + \left(11 a + 15\right)\cdot 17^{7} + \left(3 a + 3\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 10 a + 10 + \left(6 a + 1\right)\cdot 17 + 8\cdot 17^{2} + \left(6 a + 7\right)\cdot 17^{3} + \left(4 a + 15\right)\cdot 17^{4} + \left(a + 3\right)\cdot 17^{5} + \left(16 a + 13\right)\cdot 17^{6} + \left(2 a + 9\right)\cdot 17^{7} + \left(2 a + 3\right)\cdot 17^{8} +O\left(17^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,2,7)(3,8,6,4)$ |
| $(1,2)(4,5)(7,8)$ |
| $(1,3,2,6)(4,7,8,5)$ |
| $(1,4,7)(2,8,5)$ |
| $(1,2)(3,6)(4,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,6)(4,8)(5,7)$ |
$-4$ |
| $12$ |
$2$ |
$(1,2)(4,5)(7,8)$ |
$0$ |
| $8$ |
$3$ |
$(1,3,5)(2,6,7)$ |
$1$ |
| $6$ |
$4$ |
$(1,3,2,6)(4,7,8,5)$ |
$0$ |
| $8$ |
$6$ |
$(1,7,3,2,5,6)(4,8)$ |
$-1$ |
| $6$ |
$8$ |
$(1,7,6,4,2,5,3,8)$ |
$0$ |
| $6$ |
$8$ |
$(1,5,6,8,2,7,3,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.