Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 23.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 40 + \left(23 a + 2\right)\cdot 53 + \left(5 a + 3\right)\cdot 53^{2} + \left(47 a + 38\right)\cdot 53^{3} + \left(5 a + 46\right)\cdot 53^{4} + \left(43 a + 49\right)\cdot 53^{5} + \left(21 a + 32\right)\cdot 53^{6} + \left(42 a + 30\right)\cdot 53^{7} + \left(27 a + 37\right)\cdot 53^{8} + \left(4 a + 39\right)\cdot 53^{9} + \left(21 a + 38\right)\cdot 53^{10} + \left(28 a + 27\right)\cdot 53^{11} + \left(40 a + 9\right)\cdot 53^{12} + \left(20 a + 10\right)\cdot 53^{13} + \left(33 a + 43\right)\cdot 53^{14} + \left(21 a + 26\right)\cdot 53^{15} + \left(47 a + 37\right)\cdot 53^{16} + \left(28 a + 40\right)\cdot 53^{17} + \left(9 a + 51\right)\cdot 53^{18} + \left(18 a + 39\right)\cdot 53^{19} + \left(32 a + 49\right)\cdot 53^{20} + \left(36 a + 49\right)\cdot 53^{21} + \left(42 a + 24\right)\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 44 a + 29 + \left(31 a + 45\right)\cdot 53 + \left(27 a + 30\right)\cdot 53^{2} + \left(27 a + 52\right)\cdot 53^{3} + \left(51 a + 3\right)\cdot 53^{4} + \left(44 a + 32\right)\cdot 53^{5} + \left(30 a + 43\right)\cdot 53^{6} + \left(4 a + 36\right)\cdot 53^{7} + \left(19 a + 12\right)\cdot 53^{8} + \left(8 a + 18\right)\cdot 53^{9} + \left(22 a + 44\right)\cdot 53^{10} + 2\cdot 53^{11} + \left(46 a + 14\right)\cdot 53^{12} + \left(40 a + 15\right)\cdot 53^{13} + \left(38 a + 44\right)\cdot 53^{14} + \left(38 a + 27\right)\cdot 53^{15} + \left(33 a + 16\right)\cdot 53^{16} + \left(36 a + 10\right)\cdot 53^{17} + \left(12 a + 35\right)\cdot 53^{18} + 9\cdot 53^{19} + \left(20 a + 18\right)\cdot 53^{20} + 48\cdot 53^{21} + \left(35 a + 9\right)\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 a + 46 + \left(21 a + 22\right)\cdot 53 + \left(25 a + 3\right)\cdot 53^{2} + \left(25 a + 29\right)\cdot 53^{3} + \left(a + 23\right)\cdot 53^{4} + \left(8 a + 1\right)\cdot 53^{5} + \left(22 a + 16\right)\cdot 53^{6} + \left(48 a + 24\right)\cdot 53^{7} + \left(33 a + 31\right)\cdot 53^{8} + \left(44 a + 32\right)\cdot 53^{9} + \left(30 a + 18\right)\cdot 53^{10} + \left(52 a + 35\right)\cdot 53^{11} + \left(6 a + 38\right)\cdot 53^{12} + \left(12 a + 26\right)\cdot 53^{13} + \left(14 a + 52\right)\cdot 53^{14} + \left(14 a + 37\right)\cdot 53^{15} + \left(19 a + 6\right)\cdot 53^{16} + \left(16 a + 17\right)\cdot 53^{17} + \left(40 a + 49\right)\cdot 53^{18} + \left(52 a + 50\right)\cdot 53^{19} + \left(32 a + 44\right)\cdot 53^{20} + \left(52 a + 29\right)\cdot 53^{21} + \left(17 a + 43\right)\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 + 51\cdot 53 + 37\cdot 53^{2} + 13\cdot 53^{3} + 22\cdot 53^{4} + 14\cdot 53^{5} + 14\cdot 53^{6} + 36\cdot 53^{7} + 47\cdot 53^{8} + 28\cdot 53^{9} + 46\cdot 53^{10} + 39\cdot 53^{11} + 28\cdot 53^{12} + 34\cdot 53^{13} + 50\cdot 53^{14} + 18\cdot 53^{15} + 43\cdot 53^{16} + 43\cdot 53^{17} + 47\cdot 53^{18} + 51\cdot 53^{19} + 17\cdot 53^{20} + 11\cdot 53^{21} + 41\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a + 12 + \left(33 a + 11\right)\cdot 53 + \left(26 a + 3\right)\cdot 53^{2} + \left(34 a + 33\right)\cdot 53^{3} + \left(12 a + 6\right)\cdot 53^{4} + \left(32 a + 43\right)\cdot 53^{5} + \left(23 a + 13\right)\cdot 53^{6} + \left(39 a + 50\right)\cdot 53^{7} + \left(5 a + 16\right)\cdot 53^{8} + \left(25 a + 1\right)\cdot 53^{9} + \left(35 a + 15\right)\cdot 53^{10} + \left(12 a + 15\right)\cdot 53^{11} + \left(19 a + 43\right)\cdot 53^{12} + \left(44 a + 49\right)\cdot 53^{13} + \left(28 a + 4\right)\cdot 53^{14} + \left(36 a + 38\right)\cdot 53^{15} + \left(18 a + 35\right)\cdot 53^{16} + \left(42 a + 11\right)\cdot 53^{17} + \left(6 a + 32\right)\cdot 53^{18} + \left(39 a + 34\right)\cdot 53^{19} + \left(38 a + 10\right)\cdot 53^{20} + \left(28 a + 4\right)\cdot 53^{21} + \left(11 a + 14\right)\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 39 a + 43 + \left(29 a + 28\right)\cdot 53 + \left(47 a + 1\right)\cdot 53^{2} + \left(5 a + 9\right)\cdot 53^{3} + \left(47 a + 23\right)\cdot 53^{4} + \left(9 a + 4\right)\cdot 53^{5} + \left(31 a + 24\right)\cdot 53^{6} + \left(10 a + 19\right)\cdot 53^{7} + 25 a\cdot 53^{8} + \left(48 a + 30\right)\cdot 53^{9} + \left(31 a + 12\right)\cdot 53^{10} + \left(24 a + 14\right)\cdot 53^{11} + \left(12 a + 37\right)\cdot 53^{12} + \left(32 a + 52\right)\cdot 53^{13} + \left(19 a + 49\right)\cdot 53^{14} + \left(31 a + 26\right)\cdot 53^{15} + \left(5 a + 46\right)\cdot 53^{16} + \left(24 a + 2\right)\cdot 53^{17} + \left(43 a + 8\right)\cdot 53^{18} + \left(34 a + 50\right)\cdot 53^{19} + \left(20 a + 1\right)\cdot 53^{20} + \left(16 a + 5\right)\cdot 53^{21} + 10 a\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 50 + 18\cdot 53 + 2\cdot 53^{2} + 51\cdot 53^{3} + 9\cdot 53^{4} + 13\cdot 53^{5} + 44\cdot 53^{6} + 41\cdot 53^{7} + 11\cdot 53^{8} + 18\cdot 53^{9} + 10\cdot 53^{10} + 46\cdot 53^{11} + 38\cdot 53^{12} + 26\cdot 53^{13} + 49\cdot 53^{14} + 38\cdot 53^{15} + 4\cdot 53^{16} + 29\cdot 53^{17} + 23\cdot 53^{18} + 2\cdot 53^{19} + 48\cdot 53^{20} + 35\cdot 53^{21} + 46\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 46 a + 40 + \left(19 a + 30\right)\cdot 53 + \left(26 a + 23\right)\cdot 53^{2} + \left(18 a + 38\right)\cdot 53^{3} + \left(40 a + 22\right)\cdot 53^{4} + 20 a\cdot 53^{5} + \left(29 a + 23\right)\cdot 53^{6} + \left(13 a + 25\right)\cdot 53^{7} + 47 a\cdot 53^{8} + \left(27 a + 43\right)\cdot 53^{9} + \left(17 a + 25\right)\cdot 53^{10} + \left(40 a + 30\right)\cdot 53^{11} + \left(33 a + 1\right)\cdot 53^{12} + \left(8 a + 49\right)\cdot 53^{13} + \left(24 a + 22\right)\cdot 53^{14} + \left(16 a + 49\right)\cdot 53^{15} + \left(34 a + 20\right)\cdot 53^{16} + \left(10 a + 3\right)\cdot 53^{17} + \left(46 a + 17\right)\cdot 53^{18} + \left(13 a + 25\right)\cdot 53^{19} + \left(14 a + 20\right)\cdot 53^{20} + \left(24 a + 27\right)\cdot 53^{21} + \left(41 a + 31\right)\cdot 53^{22} +O\left(53^{ 23 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3)(4,7)$ |
| $(4,7)(6,8)$ |
| $(1,2,4,8,5,3,7,6)$ |
| $(1,5)(6,8)$ |
| $(1,6,4)(5,8,7)$ |
| $(1,2,5,3)(4,6,7,8)$ |
| $(2,8,4)(3,6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,5)(2,3)(4,7)(6,8)$ |
$-4$ |
| $6$ |
$2$ |
$(1,5)(6,8)$ |
$0$ |
| $12$ |
$2$ |
$(1,7)(2,8)(3,6)(4,5)$ |
$0$ |
| $24$ |
$2$ |
$(1,5)(2,6)(3,8)$ |
$0$ |
| $32$ |
$3$ |
$(1,6,4)(5,8,7)$ |
$1$ |
| $6$ |
$4$ |
$(1,2,5,3)(4,6,7,8)$ |
$0$ |
| $6$ |
$4$ |
$(1,6,5,8)(2,7,3,4)$ |
$0$ |
| $12$ |
$4$ |
$(2,8,3,6)$ |
$2$ |
| $12$ |
$4$ |
$(1,5)(2,8,3,6)(4,7)$ |
$-2$ |
| $32$ |
$6$ |
$(1,8,2,5,6,3)(4,7)$ |
$-1$ |
| $24$ |
$8$ |
$(1,2,4,6,5,3,7,8)$ |
$0$ |
| $24$ |
$8$ |
$(1,6,2,7,5,8,3,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.