Properties

Label 4.263_467.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 263 \cdot 467 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$122821= 263 \cdot 467 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 4 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.263_467.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 47 + 249\cdot 349 + 190\cdot 349^{2} + 89\cdot 349^{3} + 228\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 106 + 124\cdot 349 + 205\cdot 349^{2} + 296\cdot 349^{3} + 191\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 + 333\cdot 349 + 319\cdot 349^{2} + 166\cdot 349^{3} + 43\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 181 + 168\cdot 349 + 25\cdot 349^{2} + 178\cdot 349^{3} + 226\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 250 + 171\cdot 349 + 305\cdot 349^{2} + 315\cdot 349^{3} + 7\cdot 349^{4} +O\left(349^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.