Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 a + 6 + \left(2 a + 21\right)\cdot 29 + 8\cdot 29^{2} + \left(a + 27\right)\cdot 29^{3} + \left(25 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 + 12\cdot 29 + 13\cdot 29^{2} + 4\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 4 + \left(11 a + 8\right)\cdot 29 + \left(8 a + 28\right)\cdot 29^{2} + \left(28 a + 2\right)\cdot 29^{3} + \left(21 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 23 a + 5 + 17 a\cdot 29 + \left(20 a + 1\right)\cdot 29^{2} + 20\cdot 29^{3} + \left(7 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 a + 9 + \left(26 a + 16\right)\cdot 29 + \left(28 a + 6\right)\cdot 29^{2} + \left(27 a + 3\right)\cdot 29^{3} + \left(3 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $10$ |
$2$ |
$(1,2)$ |
$2$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.