Properties

Label 4.23e2_83e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 23^{2} \cdot 83^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$3644281= 23^{2} \cdot 83^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + 41 x^{3} - 42 x^{2} + 43 x - 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + \left(2 a + 18\right)\cdot 19 + \left(8 a + 15\right)\cdot 19^{2} + \left(8 a + 8\right)\cdot 19^{3} + \left(15 a + 7\right)\cdot 19^{4} + \left(16 a + 2\right)\cdot 19^{5} + \left(7 a + 11\right)\cdot 19^{6} + \left(8 a + 13\right)\cdot 19^{7} + \left(11 a + 14\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 4 + \left(16 a + 16\right)\cdot 19 + \left(10 a + 2\right)\cdot 19^{2} + \left(10 a + 9\right)\cdot 19^{3} + \left(3 a + 14\right)\cdot 19^{4} + \left(2 a + 3\right)\cdot 19^{5} + \left(11 a + 2\right)\cdot 19^{6} + \left(10 a + 14\right)\cdot 19^{7} + \left(7 a + 17\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 + 3\cdot 19 + 19^{3} + 16\cdot 19^{4} + 12\cdot 19^{5} + 5\cdot 19^{6} + 10\cdot 19^{7} + 5\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 14 a + \left(7 a + 11\right)\cdot 19 + \left(3 a + 15\right)\cdot 19^{2} + \left(4 a + 11\right)\cdot 19^{3} + \left(10 a + 16\right)\cdot 19^{4} + \left(2 a + 12\right)\cdot 19^{5} + \left(16 a + 10\right)\cdot 19^{6} + \left(8 a + 1\right)\cdot 19^{7} + \left(17 a + 2\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 14 + \left(11 a + 4\right)\cdot 19 + \left(15 a + 11\right)\cdot 19^{2} + \left(14 a + 12\right)\cdot 19^{3} + \left(8 a + 3\right)\cdot 19^{4} + \left(16 a + 5\right)\cdot 19^{5} + \left(2 a + 5\right)\cdot 19^{6} + \left(10 a + 13\right)\cdot 19^{7} + \left(a + 10\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 6 + 3\cdot 19 + 11\cdot 19^{2} + 13\cdot 19^{3} + 17\cdot 19^{4} + 3\cdot 19^{6} + 4\cdot 19^{7} + 6\cdot 19^{8} +O\left(19^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,5)(2,4)(3,6)$
$(4,6,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,5)(2,4)(3,6)$ $0$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$9$ $2$ $(2,3)(5,6)$ $0$
$2$ $3$ $(1,2,3)(4,5,6)$ $-2$
$2$ $3$ $(1,2,3)(4,6,5)$ $-2$
$4$ $3$ $(4,6,5)$ $1$
$6$ $6$ $(1,5,3,4,2,6)$ $0$
$6$ $6$ $(1,5,2,4,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.