Properties

Label 4.23831e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 23831^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$13534019565191= 23831^{3} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.23831.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 5\cdot 223 + 175\cdot 223^{2} + 199\cdot 223^{3} + 120\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 + 50\cdot 223 + 35\cdot 223^{2} + 203\cdot 223^{3} + 128\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 76 + 139\cdot 223 + 124\cdot 223^{2} + 74\cdot 223^{3} + 184\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 125 + 36\cdot 223 + 172\cdot 223^{2} + 102\cdot 223^{3} + 7\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 173 + 214\cdot 223 + 161\cdot 223^{2} + 88\cdot 223^{3} + 4\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.