Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 5\cdot 223 + 175\cdot 223^{2} + 199\cdot 223^{3} + 120\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 41 + 50\cdot 223 + 35\cdot 223^{2} + 203\cdot 223^{3} + 128\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 76 + 139\cdot 223 + 124\cdot 223^{2} + 74\cdot 223^{3} + 184\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 125 + 36\cdot 223 + 172\cdot 223^{2} + 102\cdot 223^{3} + 7\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 173 + 214\cdot 223 + 161\cdot 223^{2} + 88\cdot 223^{3} + 4\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $10$ |
$2$ |
$(1,2)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.