Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 461 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 98 + 99\cdot 461 + 277\cdot 461^{2} + 443\cdot 461^{3} + 317\cdot 461^{4} +O\left(461^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 203 + 279\cdot 461 + 175\cdot 461^{2} + 315\cdot 461^{3} + 430\cdot 461^{4} +O\left(461^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 247 + 346\cdot 461 + 218\cdot 461^{2} + 382\cdot 461^{3} + 138\cdot 461^{4} +O\left(461^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 386 + 441\cdot 461 + 9\cdot 461^{2} + 144\cdot 461^{3} + 38\cdot 461^{4} +O\left(461^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 450 + 215\cdot 461 + 240\cdot 461^{2} + 97\cdot 461^{3} + 457\cdot 461^{4} +O\left(461^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $10$ | $2$ | $(1,2)$ | $2$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.