Properties

Label 4.229e4.8t40.1
Dimension 4
Group $Q_8:S_4$
Conductor $ 229^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Q_8:S_4$
Conductor:$2750058481= 229^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{5} - 2 x^{4} + 3 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8:S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 2 + \left(a + 26\right)\cdot 29 + \left(2 a + 10\right)\cdot 29^{2} + \left(18 a + 15\right)\cdot 29^{3} + \left(23 a + 12\right)\cdot 29^{4} + \left(12 a + 10\right)\cdot 29^{5} + \left(28 a + 19\right)\cdot 29^{6} + \left(2 a + 1\right)\cdot 29^{7} + \left(2 a + 22\right)\cdot 29^{8} + \left(19 a + 9\right)\cdot 29^{9} + \left(12 a + 12\right)\cdot 29^{10} + 6 a\cdot 29^{11} + \left(5 a + 4\right)\cdot 29^{12} + \left(23 a + 8\right)\cdot 29^{13} + 24\cdot 29^{14} + \left(8 a + 25\right)\cdot 29^{15} + \left(9 a + 22\right)\cdot 29^{16} + \left(5 a + 20\right)\cdot 29^{17} + \left(24 a + 15\right)\cdot 29^{18} + \left(24 a + 26\right)\cdot 29^{19} + \left(4 a + 15\right)\cdot 29^{20} + \left(13 a + 13\right)\cdot 29^{21} + \left(23 a + 11\right)\cdot 29^{22} + 25\cdot 29^{23} + \left(4 a + 4\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 2 }$ $=$ $ 21 + 20\cdot 29 + 8\cdot 29^{2} + 8\cdot 29^{3} + 25\cdot 29^{4} + 22\cdot 29^{5} + 21\cdot 29^{6} + 4\cdot 29^{7} + 6\cdot 29^{9} + 2\cdot 29^{10} + 26\cdot 29^{11} + 12\cdot 29^{12} + 13\cdot 29^{13} + 14\cdot 29^{14} + 19\cdot 29^{15} + 24\cdot 29^{16} + 10\cdot 29^{17} + 29^{18} + 21\cdot 29^{19} + 11\cdot 29^{20} + 2\cdot 29^{21} + 9\cdot 29^{22} + 8\cdot 29^{23} + 18\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 16 + \left(15 a + 13\right)\cdot 29 + \left(3 a + 22\right)\cdot 29^{2} + \left(20 a + 22\right)\cdot 29^{3} + \left(20 a + 20\right)\cdot 29^{4} + 3 a\cdot 29^{5} + \left(27 a + 3\right)\cdot 29^{6} + \left(27 a + 18\right)\cdot 29^{7} + \left(14 a + 3\right)\cdot 29^{8} + \left(18 a + 5\right)\cdot 29^{9} + \left(11 a + 25\right)\cdot 29^{10} + 16\cdot 29^{11} + \left(23 a + 3\right)\cdot 29^{12} + \left(25 a + 5\right)\cdot 29^{13} + \left(16 a + 12\right)\cdot 29^{14} + \left(20 a + 4\right)\cdot 29^{15} + \left(2 a + 12\right)\cdot 29^{16} + \left(28 a + 3\right)\cdot 29^{17} + \left(10 a + 10\right)\cdot 29^{18} + \left(12 a + 14\right)\cdot 29^{19} + \left(9 a + 20\right)\cdot 29^{20} + 10\cdot 29^{21} + \left(24 a + 19\right)\cdot 29^{22} + \left(8 a + 26\right)\cdot 29^{23} + \left(4 a + 25\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 28 + \left(13 a + 18\right)\cdot 29 + \left(25 a + 24\right)\cdot 29^{2} + \left(8 a + 3\right)\cdot 29^{3} + \left(8 a + 17\right)\cdot 29^{4} + \left(25 a + 27\right)\cdot 29^{5} + \left(a + 18\right)\cdot 29^{6} + \left(a + 14\right)\cdot 29^{7} + \left(14 a + 21\right)\cdot 29^{8} + \left(10 a + 24\right)\cdot 29^{9} + \left(17 a + 6\right)\cdot 29^{10} + \left(28 a + 7\right)\cdot 29^{11} + \left(5 a + 2\right)\cdot 29^{12} + \left(3 a + 24\right)\cdot 29^{13} + \left(12 a + 12\right)\cdot 29^{14} + \left(8 a + 3\right)\cdot 29^{15} + \left(26 a + 5\right)\cdot 29^{16} + 25\cdot 29^{17} + \left(18 a + 7\right)\cdot 29^{18} + \left(16 a + 7\right)\cdot 29^{19} + \left(19 a + 26\right)\cdot 29^{20} + \left(28 a + 2\right)\cdot 29^{21} + \left(4 a + 23\right)\cdot 29^{22} + \left(20 a + 17\right)\cdot 29^{23} + \left(24 a + 9\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 5 }$ $=$ $ 11 a + \left(18 a + 10\right)\cdot 29 + \left(24 a + 25\right)\cdot 29^{2} + \left(26 a + 14\right)\cdot 29^{3} + \left(18 a + 11\right)\cdot 29^{4} + \left(19 a + 21\right)\cdot 29^{5} + \left(2 a + 7\right)\cdot 29^{6} + \left(25 a + 3\right)\cdot 29^{7} + \left(6 a + 4\right)\cdot 29^{8} + \left(7 a + 5\right)\cdot 29^{9} + \left(9 a + 4\right)\cdot 29^{10} + \left(3 a + 10\right)\cdot 29^{11} + \left(4 a + 10\right)\cdot 29^{12} + \left(19 a + 14\right)\cdot 29^{13} + \left(26 a + 16\right)\cdot 29^{14} + \left(25 a + 12\right)\cdot 29^{15} + \left(12 a + 6\right)\cdot 29^{16} + \left(3 a + 12\right)\cdot 29^{17} + \left(9 a + 6\right)\cdot 29^{18} + \left(a + 1\right)\cdot 29^{19} + \left(17 a + 20\right)\cdot 29^{20} + \left(17 a + 23\right)\cdot 29^{21} + \left(11 a + 7\right)\cdot 29^{22} + \left(17 a + 8\right)\cdot 29^{23} + \left(16 a + 8\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 9 + \left(27 a + 20\right)\cdot 29 + \left(26 a + 19\right)\cdot 29^{2} + \left(10 a + 16\right)\cdot 29^{3} + \left(5 a + 25\right)\cdot 29^{4} + \left(16 a + 21\right)\cdot 29^{5} + 3\cdot 29^{6} + \left(26 a + 17\right)\cdot 29^{7} + 26 a\cdot 29^{8} + \left(9 a + 16\right)\cdot 29^{9} + \left(16 a + 27\right)\cdot 29^{10} + \left(22 a + 19\right)\cdot 29^{11} + \left(23 a + 23\right)\cdot 29^{12} + \left(5 a + 2\right)\cdot 29^{13} + \left(28 a + 5\right)\cdot 29^{14} + \left(20 a + 7\right)\cdot 29^{15} + \left(19 a + 3\right)\cdot 29^{16} + \left(23 a + 9\right)\cdot 29^{17} + \left(4 a + 15\right)\cdot 29^{18} + \left(4 a + 10\right)\cdot 29^{19} + \left(24 a + 15\right)\cdot 29^{20} + \left(15 a + 16\right)\cdot 29^{21} + \left(5 a + 28\right)\cdot 29^{22} + \left(28 a + 5\right)\cdot 29^{23} + \left(24 a + 24\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 7 }$ $=$ $ 18 a + 26 + \left(10 a + 3\right)\cdot 29 + \left(4 a + 14\right)\cdot 29^{2} + \left(2 a + 8\right)\cdot 29^{3} + \left(10 a + 21\right)\cdot 29^{4} + \left(9 a + 13\right)\cdot 29^{5} + \left(26 a + 1\right)\cdot 29^{6} + \left(3 a + 10\right)\cdot 29^{7} + \left(22 a + 13\right)\cdot 29^{8} + \left(21 a + 5\right)\cdot 29^{9} + \left(19 a + 14\right)\cdot 29^{10} + \left(25 a + 17\right)\cdot 29^{11} + \left(24 a + 27\right)\cdot 29^{12} + \left(9 a + 18\right)\cdot 29^{13} + \left(2 a + 14\right)\cdot 29^{14} + \left(3 a + 28\right)\cdot 29^{15} + \left(16 a + 15\right)\cdot 29^{16} + \left(25 a + 16\right)\cdot 29^{17} + \left(19 a + 19\right)\cdot 29^{18} + \left(27 a + 27\right)\cdot 29^{19} + \left(11 a + 16\right)\cdot 29^{20} + \left(11 a + 7\right)\cdot 29^{21} + \left(17 a + 19\right)\cdot 29^{22} + \left(11 a + 25\right)\cdot 29^{23} + \left(12 a + 15\right)\cdot 29^{24} +O\left(29^{ 25 }\right)$
$r_{ 8 }$ $=$ $ 15 + 2\cdot 29 + 19\cdot 29^{2} + 25\cdot 29^{3} + 10\cdot 29^{4} + 26\cdot 29^{5} + 10\cdot 29^{6} + 17\cdot 29^{7} + 21\cdot 29^{8} + 14\cdot 29^{9} + 23\cdot 29^{10} + 17\cdot 29^{11} + 2\cdot 29^{12} + 16\cdot 29^{14} + 14\cdot 29^{15} + 25\cdot 29^{16} + 17\cdot 29^{17} + 10\cdot 29^{18} + 7\cdot 29^{19} + 18\cdot 29^{20} + 9\cdot 29^{21} + 26\cdot 29^{22} + 26\cdot 29^{23} + 8\cdot 29^{24} +O\left(29^{ 25 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(3,5)$
$(3,5)(4,7)$
$(2,5,7)(3,4,8)$
$(1,3)(2,8)(5,6)$
$(1,5,6,3)(2,7,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $-4$
$6$ $2$ $(3,5)(4,7)$ $0$
$12$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$24$ $2$ $(1,3)(2,8)(5,6)$ $0$
$32$ $3$ $(1,7,3)(4,5,6)$ $1$
$6$ $4$ $(1,5,6,3)(2,7,8,4)$ $0$
$6$ $4$ $(1,7,6,4)(2,5,8,3)$ $0$
$12$ $4$ $(1,3,6,5)(2,8)(4,7)$ $2$
$12$ $4$ $(1,4,6,7)$ $-2$
$32$ $6$ $(1,2,5,6,8,3)(4,7)$ $-1$
$24$ $8$ $(1,4,8,5,6,7,2,3)$ $0$
$24$ $8$ $(1,8,7,3,6,2,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.