Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 7\cdot 17 + 8\cdot 17^{2} + 6\cdot 17^{3} + 12\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a + \left(8 a + 2\right)\cdot 17 + \left(6 a + 12\right)\cdot 17^{2} + \left(9 a + 6\right)\cdot 17^{3} + \left(11 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a + 10 + 8 a\cdot 17 + \left(10 a + 10\right)\cdot 17^{2} + \left(7 a + 9\right)\cdot 17^{3} + \left(5 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a + 13 + \left(2 a + 13\right)\cdot 17 + \left(11 a + 5\right)\cdot 17^{2} + \left(5 a + 8\right)\cdot 17^{3} + \left(15 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 a + 2 + \left(14 a + 10\right)\cdot 17 + \left(5 a + 14\right)\cdot 17^{2} + \left(11 a + 2\right)\cdot 17^{3} + \left(a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $10$ |
$2$ |
$(1,2)$ |
$-2$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.