Properties

Label 4.2262971225.12t34.a.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $2262971225$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(2262971225\)\(\medspace = 5^{2} \cdot 449^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.56125.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: even
Determinant: 1.449.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.56125.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + x^{3} - 3x^{2} + 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a + 19 + \left(19 a + 3\right)\cdot 41 + \left(28 a + 6\right)\cdot 41^{2} + \left(4 a + 35\right)\cdot 41^{3} + \left(36 a + 26\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 35 a + 32 + \left(25 a + 6\right)\cdot 41 + \left(30 a + 39\right)\cdot 41^{2} + \left(18 a + 20\right)\cdot 41^{3} + \left(3 a + 14\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 + 8\cdot 41 + 23\cdot 41^{2} + 36\cdot 41^{3} + 34\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 30 + 3\cdot 41 + 4\cdot 41^{3} + 33\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 31 a + 8 + \left(21 a + 10\right)\cdot 41 + \left(12 a + 31\right)\cdot 41^{2} + \left(36 a + 20\right)\cdot 41^{3} + \left(4 a + 7\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 14 + \left(15 a + 8\right)\cdot 41 + \left(10 a + 23\right)\cdot 41^{2} + \left(22 a + 5\right)\cdot 41^{3} + \left(37 a + 6\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$-2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)$$1$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(2,4,6)(3,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.