Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 47 + 194\cdot 241 + 5\cdot 241^{2} + 200\cdot 241^{3} + 188\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 88 + 84\cdot 241 + 45\cdot 241^{2} + 31\cdot 241^{3} + 45\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 175 + 27\cdot 241 + 12\cdot 241^{2} + 65\cdot 241^{3} + 218\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 188 + 88\cdot 241 + 233\cdot 241^{2} + 186\cdot 241^{3} + 5\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 226 + 86\cdot 241 + 185\cdot 241^{2} + 239\cdot 241^{3} + 23\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.