Properties

Label 4.202817e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 202817^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$8342823647672513= 202817^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 5 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 347 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 27\cdot 347 + 187\cdot 347^{2} + 57\cdot 347^{3} + 183\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 131 + 215\cdot 347 + 18\cdot 347^{2} + 339\cdot 347^{3} + 234\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 178 + 36\cdot 347 + 130\cdot 347^{2} + 188\cdot 347^{3} + 279\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 190 + 168\cdot 347 + 193\cdot 347^{2} + 36\cdot 347^{3} + 18\cdot 347^{4} +O\left(347^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 191 + 246\cdot 347 + 164\cdot 347^{2} + 72\cdot 347^{3} + 325\cdot 347^{4} +O\left(347^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.