Properties

Label 4.18688.6t13.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $18688$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(18688\)\(\medspace = 2^{8} \cdot 73 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.149504.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.73.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.149504.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + x^{4} - x^{2} + 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: \( x^{2} + 82x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 54 a + 81 + \left(10 a + 84\right)\cdot 89 + \left(25 a + 80\right)\cdot 89^{2} + \left(31 a + 68\right)\cdot 89^{3} + \left(53 a + 51\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 59 + 53\cdot 89 + 78\cdot 89^{2} + 63\cdot 89^{3} + 62\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 83 + 27\cdot 89 + 81\cdot 89^{2} + 33\cdot 89^{3} + 26\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 64 a + 59 + \left(62 a + 32\right)\cdot 89 + \left(34 a + 22\right)\cdot 89^{2} + \left(45 a + 44\right)\cdot 89^{3} + \left(80 a + 7\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 35 a + 14 + \left(78 a + 16\right)\cdot 89 + \left(63 a + 68\right)\cdot 89^{2} + \left(57 a + 84\right)\cdot 89^{3} + \left(35 a + 37\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 a + 62 + \left(26 a + 51\right)\cdot 89 + \left(54 a + 24\right)\cdot 89^{2} + \left(43 a + 60\right)\cdot 89^{3} + \left(8 a + 80\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,5)$$2$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)$$1$
$4$$3$$(1,2,5)(3,4,6)$$-2$
$18$$4$$(1,3)(2,6,5,4)$$0$
$12$$6$$(1,4,2,6,5,3)$$0$
$12$$6$$(2,5)(3,4,6)$$-1$

The blue line marks the conjugacy class containing complex conjugation.