Properties

Label 4.17e2_31e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 17^{2} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$277729= 17^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} - 7 x^{2} - 2 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 4\cdot 43 + 19\cdot 43^{2} + 15\cdot 43^{3} + 3\cdot 43^{4} + 6\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 38 + \left(2 a + 35\right)\cdot 43 + \left(16 a + 15\right)\cdot 43^{2} + \left(26 a + 4\right)\cdot 43^{3} + \left(4 a + 18\right)\cdot 43^{4} + \left(25 a + 4\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 39 + \left(19 a + 31\right)\cdot 43 + \left(37 a + 24\right)\cdot 43^{2} + \left(28 a + 20\right)\cdot 43^{3} + \left(27 a + 12\right)\cdot 43^{4} + \left(14 a + 5\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 22 + \left(23 a + 25\right)\cdot 43 + \left(5 a + 42\right)\cdot 43^{2} + \left(14 a + 11\right)\cdot 43^{3} + \left(15 a + 11\right)\cdot 43^{4} + \left(28 a + 35\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 16 + 10\cdot 43 + 40\cdot 43^{2} + 18\cdot 43^{3} + 43^{4} + 10\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 12 + \left(40 a + 21\right)\cdot 43 + \left(26 a + 29\right)\cdot 43^{2} + \left(16 a + 14\right)\cdot 43^{3} + \left(38 a + 39\right)\cdot 43^{4} + \left(17 a + 24\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(4,5)$
$(3,5,4)$
$(1,3)(2,5)(4,6)$
$(1,2,6)(3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$9$ $2$ $(1,2)(4,5)$ $0$
$2$ $3$ $(1,2,6)(3,5,4)$ $-2$
$2$ $3$ $(1,2,6)(3,4,5)$ $-2$
$4$ $3$ $(1,6,2)$ $1$
$6$ $6$ $(1,5,6,3,2,4)$ $0$
$6$ $6$ $(1,5,6,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.