Properties

Label 4.17e2_101e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 17^{2} \cdot 101^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$297756989= 17^{2} \cdot 101^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 5 x^{3} - 2 x^{2} - 3 x - 23 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.101.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 4 + \left(17 a + 17\right)\cdot 19 + \left(3 a + 3\right)\cdot 19^{2} + \left(6 a + 17\right)\cdot 19^{3} + \left(4 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 10\cdot 19 + 7\cdot 19^{2} + 18\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + \left(14 a + 10\right)\cdot 19 + \left(10 a + 7\right)\cdot 19^{2} + \left(4 a + 3\right)\cdot 19^{3} + \left(4 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 7 + \left(4 a + 17\right)\cdot 19 + \left(8 a + 3\right)\cdot 19^{2} + \left(14 a + 16\right)\cdot 19^{3} + 14 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 13 + \left(a + 6\right)\cdot 19 + \left(15 a + 9\right)\cdot 19^{2} + 12 a\cdot 19^{3} + \left(14 a + 2\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 + 14\cdot 19 + 5\cdot 19^{2} + 19^{3} + 13\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$-2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,5)(2,3)$$0$
$4$$3$$(1,5,6)(2,3,4)$$1$
$4$$3$$(2,3,4)$$-2$
$18$$4$$(1,2,5,3)(4,6)$$0$
$12$$6$$(1,2,5,3,6,4)$$1$
$12$$6$$(1,5,6)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.