Properties

Label 4.17_4153.5t5.1
Dimension 4
Group $S_5$
Conductor $ 17 \cdot 4153 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$70601= 17 \cdot 4153 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 50\cdot 53 + 22\cdot 53^{2} + 49\cdot 53^{3} + 42\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 28 + \left(43 a + 17\right)\cdot 53 + \left(22 a + 45\right)\cdot 53^{2} + \left(11 a + 30\right)\cdot 53^{3} + \left(35 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 52 + \left(9 a + 24\right)\cdot 53 + \left(30 a + 40\right)\cdot 53^{2} + 41 a\cdot 53^{3} + \left(17 a + 37\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 + 18\cdot 53 + 50\cdot 53^{2} + 13\cdot 53^{3} + 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 47\cdot 53 + 52\cdot 53^{2} + 10\cdot 53^{3} + 11\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.