Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 557 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 70 + 323\cdot 557 + 459\cdot 557^{2} + 454\cdot 557^{3} + 448\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 249 + 269\cdot 557 + 134\cdot 557^{2} + 323\cdot 557^{3} + 266\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 386 + 362\cdot 557 + 85\cdot 557^{2} + 548\cdot 557^{3} + 336\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 482 + 189\cdot 557 + 112\cdot 557^{2} + 358\cdot 557^{3} + 44\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 485 + 525\cdot 557 + 321\cdot 557^{2} + 543\cdot 557^{3} + 16\cdot 557^{4} +O\left(557^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.