Properties

Label 4.167_1039.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 167 \cdot 1039 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$173513= 167 \cdot 1039 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 3 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.167_1039.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 293 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 134 + 23\cdot 293 + 118\cdot 293^{2} + 234\cdot 293^{3} + 53\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 148 + 12\cdot 293 + 22\cdot 293^{2} + 283\cdot 293^{3} + 171\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 154 + 150\cdot 293 + 141\cdot 293^{2} + 262\cdot 293^{3} + 195\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 218 + 7\cdot 293 + 255\cdot 293^{2} + 240\cdot 293^{3} + 260\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 227 + 98\cdot 293 + 49\cdot 293^{2} + 151\cdot 293^{3} + 196\cdot 293^{4} +O\left(293^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.