Properties

Label 4.161307172017.12t34.b
Dimension $4$
Group $C_3^2:D_4$
Conductor $161307172017$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:\(161307172017\)\(\medspace = 3^{2} \cdot 2617^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.70659.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: even
Projective image: $\SOPlus(4,2)$
Projective field: Galois closure of 6.0.70659.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: \( x^{2} + 63x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 2 + 65\cdot 67 + 17\cdot 67^{2} + 10\cdot 67^{3} + 51\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 43 a + 62 + \left(24 a + 11\right)\cdot 67 + \left(25 a + 64\right)\cdot 67^{2} + \left(5 a + 29\right)\cdot 67^{3} + \left(36 a + 26\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 56 + 34\cdot 67 + 38\cdot 67^{2} + 10\cdot 67^{3} + 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 a + 33 + 42 a\cdot 67 + \left(41 a + 7\right)\cdot 67^{2} + \left(61 a + 26\right)\cdot 67^{3} + \left(30 a + 31\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a + 28 + \left(33 a + 52\right)\cdot 67 + \left(35 a + 15\right)\cdot 67^{2} + \left(35 a + 42\right)\cdot 67^{3} + \left(59 a + 44\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 52 a + 21 + \left(33 a + 36\right)\cdot 67 + \left(31 a + 57\right)\cdot 67^{2} + \left(31 a + 14\right)\cdot 67^{3} + \left(7 a + 46\right)\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(3,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $0$
$6$ $2$ $(2,4)$ $-2$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$4$ $3$ $(1,2,4)$ $1$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,5,2,6,4,3)$ $0$
$12$ $6$ $(2,4)(3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.