Properties

Label 4.15919e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 15919^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$4034106396559= 15919^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.15919.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 12 + \left(19 a + 37\right)\cdot 127 + \left(105 a + 23\right)\cdot 127^{2} + \left(105 a + 40\right)\cdot 127^{3} + \left(17 a + 102\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 27\cdot 127 + 65\cdot 127^{2} + 20\cdot 127^{3} + 13\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 112 a + 27 + \left(107 a + 41\right)\cdot 127 + \left(21 a + 109\right)\cdot 127^{2} + \left(21 a + 40\right)\cdot 127^{3} + \left(109 a + 14\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 22\cdot 127 + 12\cdot 127^{2} + 9\cdot 127^{3} + 91\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 126\cdot 127 + 43\cdot 127^{2} + 16\cdot 127^{3} + 33\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.