Properties

Label 4.157e3_937e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 157^{3} \cdot 937^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$3183594383816029= 157^{3} \cdot 937^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 5 x^{2} + 3 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 5 + \left(44 a + 18\right)\cdot 59 + 51\cdot 59^{2} + \left(35 a + 19\right)\cdot 59^{3} + \left(42 a + 1\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 27 + \left(48 a + 32\right)\cdot 59 + \left(47 a + 23\right)\cdot 59^{2} + \left(48 a + 38\right)\cdot 59^{3} + \left(53 a + 12\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 57 + \left(14 a + 10\right)\cdot 59 + \left(58 a + 7\right)\cdot 59^{2} + \left(23 a + 54\right)\cdot 59^{3} + \left(16 a + 8\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 45 + \left(10 a + 3\right)\cdot 59 + \left(11 a + 23\right)\cdot 59^{2} + \left(10 a + 39\right)\cdot 59^{3} + \left(5 a + 17\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 52\cdot 59 + 12\cdot 59^{2} + 25\cdot 59^{3} + 18\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.