Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(15248\)\(\medspace = 2^{4} \cdot 953 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.0.60992.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Projective image: | $\SOPlus(4,2)$ |
Projective field: | Galois closure of 6.0.60992.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 8 a + 7 + 10 a\cdot 17 + \left(a + 10\right)\cdot 17^{2} + \left(10 a + 12\right)\cdot 17^{3} + \left(2 a + 16\right)\cdot 17^{4} +O(17^{5})\)
$r_{ 2 }$ |
$=$ |
\( 10 + 2\cdot 17 + 12\cdot 17^{2} + 5\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 9 a + 15 + \left(6 a + 2\right)\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + \left(6 a + 4\right)\cdot 17^{3} + \left(14 a + 9\right)\cdot 17^{4} +O(17^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 12 a + 8 + \left(5 a + 11\right)\cdot 17 + \left(4 a + 16\right)\cdot 17^{2} + \left(6 a + 15\right)\cdot 17^{3} + \left(16 a + 10\right)\cdot 17^{4} +O(17^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 8 + 11\cdot 17 + 12\cdot 17^{2} + 11\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 5 a + 3 + \left(11 a + 5\right)\cdot 17 + \left(12 a + 15\right)\cdot 17^{2} + 10 a\cdot 17^{3} + 4\cdot 17^{4} +O(17^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $4$ |
$6$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$6$ | $2$ | $(3,5)$ | $2$ |
$9$ | $2$ | $(3,5)(4,6)$ | $0$ |
$4$ | $3$ | $(1,3,5)(2,4,6)$ | $-2$ |
$4$ | $3$ | $(1,3,5)$ | $1$ |
$18$ | $4$ | $(1,2)(3,6,5,4)$ | $0$ |
$12$ | $6$ | $(1,4,3,6,5,2)$ | $0$ |
$12$ | $6$ | $(2,4,6)(3,5)$ | $-1$ |